رضایی، عباسعلی، و زاهدی، محمدهادی. (1397). نقش فن آوری های نوین در پیشرفت آموزش های الکترونیکی (با نگاهی به فرصتها و چالشهای پیش رو در دانشگاه ها و مراکز آموزش عالی داخل). پژوهش در نظامهای آموزشی، 12(40 )، 207-224.
شکاری، عباس، محمدی، زهرا، و محمدی، بهادر. (1396). تاثیر استفاده از فناوری های نوین آموزشی برکیفیت فعالیتهای آموزشی دبیران. پژوهش در برنامهریزی درسی (دانش و پژوهش در علوم تربیتی- برنامهریزی درسی)، 14(25 (پیاپی 52))، 74-83.
قاسمی ابیانه، امیرحسین، عباسیان، محمد و اسمائیلی، مهدی . (1403). مروری بر ادبیات موجود در زمینه بکارگیری رویکردهای یادگیری ماشین در ارتقای کیفیت آموزشی. مدیریت سرمایه انسانی دفاعی، 4(3).
محمودی، ف.، طهماسب زاده شیخلار، د.، و فرج پور، ف. (۱۴۰۰). ارزیابی میزان توجه به فرایند خلاق در دروس عملی رشته پرستاری از دیدگاه دانشجویان دانشگاه علوم پزشکی تبریز. راهبردهای آموزش در علوم پزشکی، 14(5)، ۲۵۰-۲۵۹.
Abdulellah A. Alsulaimani Department. (2023). Modeling and Classification of Student Performance Based on a Machine Learning Model. Information Sciences Letters, 12(12), 2869–2875. https://doi.org/10.18576/isl/121228
Avella, J. T., Kebritchi, M., Nunn, S. G., & Kanai, T. (2016). Learning analytics in distance education: A systematic literature review. In Online Learning (Vol. 20, Issue 2, pp. 13–29).
Bulut, O., Cormier, D. C., & Yildirim-Erbasli, S. N. (2022). Optimized Screening for At-Risk Students in Mathematics: A Machine Learning Approach. In Information (Switzerland) (Vol. 13, Issue 8). https://doi.org/10.3390/info13080400
Chen, X., Xie, H., Zou, D., & Hwang, G.-J. (2020). Application and theory gaps during the rise of Artificial Intelligence in Education. Computers and Education: Artificial Intelligence, 1, 100002. https://doi.org/10.1016/j.caeai.2020.100002
Dwijuliani, R., Rijanto, T., Munoto, Nurlaela, L., Basuki, I., & Maspiyah. (2021). Increasing student achievement motivation during online learning activities. Journal of Physics: Conference Series, 1810(1), 012072. https://doi.org/10.1088/1742-6596/1810/1/012072
Evrenoglou, T., Metelli, S., & Chaimani, A. (2022). Introduction to Meta-Analysis. In Principles and Practice of Clinical Trials (pp. 2179–2195). https://doi.org/10.1007/978-3-319-52636-2_287
Gafarov, F. M., Rudneva, Y. B., Sharifov, U. Y., Trofimova, A. V., & Bormotov, P. M. (2020). Analysis of Students’ Academic Performance by Using Machine Learning Tools. https://doi.org/10.2991/assehr.k.200509.104
Galán, J. J., Carrasco, R. A., & LaTorre, A. (2022). Military Applications of Machine Learning: A Bibliometric Perspective. Mathematics, 10(9), 1397. https://doi.org/10.3390/math10091397
Garvasiuk, O. V., Namestiuk, S. V., Tkachuk, S. S., Guz, L. O., Velyka, A. Y., & Lapa, G. M. (2023). THE EFFECTIVENESS OF INTERACTIVE METHODS IN THE EDUCATIONAL PROCESS. Clinical and Experimental Pathology, 22(2). https://doi.org/10.24061/1727-4338.XXII.2.84.2023.13
Hernández-Blanco, A., Herrera-Flores, B., Tomás, D., & Navarro-Colorado, B. (2019). A Systematic Review of Deep Learning Approaches to Educational Data Mining. Complexity, 2019, 1–22. https://doi.org/10.1155/2019/1306039
Kabakchieva, D. (2013). Predicting Student Performance by Using Data Mining Methods for Classification. Cybernetics and Information Technologies, 13(1), 61–72. https://doi.org/10.2478/cait-2013-0006
Mastour, H., Dehghani, T., Jajroudi, M., Moradi, E., Zarei, M., & Eslami, S. (2023). Prediction of medical sciences students’ performance on high-stakes examinations using machine learning models: a protocol for a systematic review. BMJ Open, 13(5), e064956. https://doi.org/10.1136/bmjopen-2022-064956
Mian, Y. S., Khalid, F., Qun, A. W. C., & Ismail, S. S. (2022). Learning Analytics in Education, Advantages and Issues: A Systematic Literature Review. In Creative Education (Vol. 13, Issue 09, pp. 2913–2920). https://doi.org/10.4236/ce.2022.139183
NADTOCHIY, Y. (2022). factors-affecting-the-quality-of-education-given-the-new-innovation-spheres-of-economy.pdf. https://doi.org/10.24234/wisdom.v23i3.861 Yulia
Nafea, I. T. (2018). Machine Learning in Educational Technology. In Machine Learning - Advanced Techniques and Emerging Applications. InTech. https://doi.org/10.5772/intechopen.72906
Oreshin, S., Filchenkov, A., Petrusha, P., Krasheninnikov, E., Panfilov, A., Glukhov, I., Kaliberda, Y., Masalskiy, D., Serdyukov, A., Kazakovtsev, V., Khlopotov, M., Podolenchuk, T., Smetannikov, I., & Kozlova, D. (2020). Implementing a Machine Learning Approach to Predicting Students’ Academic Outcomes. 2020 International Conference on Control, Robotics and Intelligent System, 78–83. https://doi.org/10.1145/3437802.3437816
Sampson, L., Jiang, T., Gradus, J. L., Cabral, H. J., Rosellini, A. J., Calabrese, J. R., Cohen, G. H., Fink, D. S., King, A. P., Liberzon, I., & Galea, S. (2021). A Machine Learning Approach to Predicting New-onset Depression in a Military Population. In Psychiatric Research and Clinical Practice (Vol. 3, Issue 3, pp. 115–122). https://doi.org/10.1176/appi.prcp.20200031
Stefan AD Popenici, S. K. (2017). Exploring the impact of artificial intelligence on teaching and learning in...: Find articles, books, journals and more.
Susiani, K., Suastra, I. W., & Arnyana, I. B. P. (2022). Study of improving the quality of learning in an effort to improve the quality of elementary school education. In Jurnal EDUCATIO: Jurnal Pendidikan Indonesia (Vol. 8, Issue 1, p. 37). https://doi.org/10.29210/1202221786
Villegas-Ch, W., Román-Cañizares, M., & Palacios-Pacheco, X. (2020). Improvement of an Online Education Model with the Integration of Machine Learning and Data Analysis in an LMS. Applied Sciences, 10(15), 5371. https://doi.org/10.3390/app10155371
Yağcı, M. (2022). Educational data mining: prediction of students’ academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 11. https://doi.org/10.1186/s40561-022-00192-z
Zafari, M., Sadeghi-Niaraki, A., Choi, S. M., & Esmaeily, A. (2021). A practical model for the evaluation of high school student performance based on machine learning. In Applied Sciences (Switzerland) (Vol. 11, Issue 23). https://doi.org/10.3390/app112311534
Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? In International Journal of Educational Technology in Higher Education (Vol. 16, Issue 1). https://doi.org/10.1186/s41239-019-0171-0
Акмеше, О. Ф., Кьор, Х., & Ербей, Х. (2021). Use of Machine Learning Techniques for the Forecast of Student Achievement in Higher Education. In Information Technologies and Learning Tools (Vol. 82, Issue 2, pp. 297–311). https://doi.org/10.33407/itlt.v82i2.4178